- ATX
- Dit is een standaard waar fabrikanten van kasten en moederborden zich aan houden, zodat het voor de klant niet uitmaakt welk moederbord hij met welke kast combineert. Dit is de opvolger van het Baby-AT formaat. De voordelen van ATX zijn dat alle I/O-connectors on-board zitten, dat de CPU beter geplaatst is ten opzichte van het (cache-)geheugen en dat de uitbreidingskaarten niet meer in de weg zitten.
- ATX is dus een standaard voor moederborden en voedingen. Het is de opvolger van de AT-vormfactor.
zondag 30 september 2012
zondag 23 september 2012
Ontstaan van binaire taal
Ik vond iets interessant op het internet over het ontstaan van de binaire taal.
Gottfried Wilhelm Leibniz heeft voor het eerst de grondslag en de mogelijkheden van het binaire stelsel beschreven in 1679. Het is zeer waarschijnlijk dat de Grieken (en andere volken) ook al weet hadden van dit stelsel, hier zijn echter geen duidelijke geschriften van gevonden.
Wilhelm Leibniz filosofeerde ook over een computer gebaseerd op een binair-nummer systeem. In 1679 schrijft hij dat ondanks zijn lengte, het binaire systeem in andere woorden tellen met 0 en 1 is wetenschappelijk gezien het meest fundamentele systeem, en zal leiden tot nieuwe ontdekkingen. Wanneer nummers gereduceerd zijn tot 0 en 1, een nieuwe wereld zal dan overal komen.
Leibniz heeft zijn ideeën nooit in de praktijk kunnen brengen door gebrek aan technische mogelijkheden. Pas in de 20e eeuw heeft men zijn ideeën kunnen gebruiken.
Gottfried Wilhelm Leibniz heeft voor het eerst de grondslag en de mogelijkheden van het binaire stelsel beschreven in 1679. Het is zeer waarschijnlijk dat de Grieken (en andere volken) ook al weet hadden van dit stelsel, hier zijn echter geen duidelijke geschriften van gevonden.
Wilhelm Leibniz filosofeerde ook over een computer gebaseerd op een binair-nummer systeem. In 1679 schrijft hij dat ondanks zijn lengte, het binaire systeem in andere woorden tellen met 0 en 1 is wetenschappelijk gezien het meest fundamentele systeem, en zal leiden tot nieuwe ontdekkingen. Wanneer nummers gereduceerd zijn tot 0 en 1, een nieuwe wereld zal dan overal komen.
Leibniz heeft zijn ideeën nooit in de praktijk kunnen brengen door gebrek aan technische mogelijkheden. Pas in de 20e eeuw heeft men zijn ideeën kunnen gebruiken.
Abonneren op:
Posts (Atom)